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ABSTRACT
We present the first application of a new foreground removal pipeline to the current lead-
ing H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study
the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al.
and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations
may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the
presented pipeline, we subtract the Galactic foreground continuum and the point-source con-
tamination using an independent component analysis technique (FASTICA), and develop a
Fourier-based optimal estimator to compute the temperature power spectrum of the intensity
maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable
tool to subtract diffuse and point-source emission through the non-Gaussian nature of their
probability distributions. The temperature power spectra of the intensity maps are dominated
by instrumental noise on small scales which FASTICA, as a conservative subtraction tech-
nique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ
cross-correlation measurements to those obtained by the singular value decomposition (SVD)
method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal
loss, as seen by the converged amplitude of these cross-correlation measurements. We con-
clude that SVD and FASTICA are complementary methods to investigate the foregrounds and
noise systematics present in intensity mapping data sets.

Key words: methods: data analysis – methods: statistical – cosmology: observations – large-
scale structure of Universe – radio lines: galaxies.

1 IN T RO D U C T I O N

Cosmological observations aim to map the largest possible volume
of the Universe in order to develop a better understanding of the
formation and evolution of large-scale structure. The clustering of

� E-mail: laura.wolz@unimelb.edu.au

galaxies traces both major unknown ingredients of the standard
model of cosmology: the dark matter distribution, and thus the
laws of gravity, in addition to the time-dependent expansion of
the Universe driven by dark energy. Historically, optical galaxy
surveys, such as the Sloan Digital Sky Survey (Tegmark et al. 2004)
or the WiggleZ Dark Energy Survey (Drinkwater et al. 2010), have
been used to map large-scale structure by cataloguing the angular
positions and redshifts of galaxies. While achieving major scientific
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discoveries such as the detection of the baryon acoustic oscillations
(BAOs; Eisenstein et al. 2005; Percival et al. 2007; Percival et al.
2010), this approach is affected by, for instance, selection effects
and redshift inaccuracies for photometric surveys, and a low survey
speed for spectroscopic observations.

Recent advances in radio interferometry, both instrumental and
algorithmic, have created excellent prospects for forthcoming radio
surveys to efficiently map large-scale structure. In addition to the
traditional galaxy surveys which find sources above a flux threshold
in radio data cubes, a new observational method called intensity
mapping has been formulated, as described by, for example, Battye,
Davies & Weller (2004), Vujanovic et al. (2009), Peterson & Suarez
(2012) and Bull et al. (2015). This technique exploits the low angular
resolution of radio telescopes by efficiently mapping the integrated
spectral line emission with a beam small enough to resolve the BAO
scale. The neutral hydrogen line (H I) at 21 cm is an excellent tracer
of the galaxy distribution and not prone to line confusion (Gong et al.
2011). Intensity mapping has also been envisaged using different
spectral lines such as the rotational CO lines (Lidz et al. 2011) or
the Lyman α line (Pullen, Doré & Bock 2014).

In comparison with galaxy surveys, intensity mapping has the
advantage of measuring the entire H I flux in the observed fre-
quency channel. This implies that there are no observational selec-
tion effects, which allows access to a wide redshift range, and the
integrated luminosity function is probed rather than the most lumi-
nous objects. The challenges of intensity mapping are the demands
on instrumental stability and the high Galactic foregrounds which
dominate the targeted frequency ranges.

The challenge of Galactic foreground subtraction has been exten-
sively addressed in the framework of cosmic microwave background
(CMB) observations; see Planck Collaboration X (2016) and Planck
Collaboration XXV (2016) for the latest results. The foregrounds
for intensity mapping have fewer existing observational constraints
than the microwave sky; however, the data contain more line-of-
sight information as it extends over a wider frequency interval.
Most foreground separation methods utilize the power-law depen-
dence of the foregrounds in the frequency direction, where the
techniques can be divided into parametric methods (Ansari et al.
2008; Shaw et al. 2014, 2015; Zhang et al. 2016) and blind meth-
ods (Wolz et al. 2014; Switzer et al. 2015; Olivari, Remazeilles &
Dickinson 2016). In this work, we perform foreground subtraction
using an independent component analysis technique (FASTICA;
Hyvärinen 1999) motivated by its previous successful applications
to CMB simulations (Maino et al. 2002), epoch of reionization
studies (Chapman et al. 2012) and intensity mapping simulations
(Wolz et al. 2014).

After promising theoretical predictions of intensity mapping sur-
veys (Chang et al. 2008; Wyithe, Loeb & Geil 2008), the Green Bank
Telescope (GBT) team has pioneered the realization of an experi-
ment and data analysis, as shown by Chang et al. (2010), Masui et al.
(2013; hereafter MA13) and Switzer et al. (2013; hereafter SW13).
The foreground removal presented by SW13 is based on a singular
value decomposition (SVD) method where the highest eigenvalues
assumed to contain the foregrounds are subtracted from the data.
MA13 show the detection of the intensity mapping signal in cross-
correlation with the WiggleZ Dark Energy Survey, which is used by
SW13 in combination with the auto-power spectrum to constrain
the amplitude of the correlation as �H IbH I = (0.62 ± 0.23) × 10−3,
where �H I is the neutral hydrogen energy density and bH I is the H I

bias parameter.
In this work, we apply our foreground removal and power spec-

trum estimator pipeline to the GBT data sets and demonstrate how

FASTICA can reliably subtract foregrounds, in addition to provid-
ing insight into the signal properties.

This paper is structured as follows. Section 2 briefly outlines
the data specifications of the GBT observations and the WiggleZ
Dark Energy Survey. Section 3 describes the Fourier-based power
spectrum estimator for the autocorrelations and cross-correlations.
Section 4 presents a detailed analysis of the component separation
and the data properties as revealed by this analysis. In Section 5,
the intensity mapping power spectrum and the cross-correlation
with WiggleZ are determined and compared with the previous GBT
results. We conclude in Section 6.

2 O BSERVATI ONS

2.1 GBT intensity maps

A detailed description of the observing strategy of the GBT intensity
maps can be found in MA13, and we provide a short summary. The
intensity maps we analyse consist of a 4.5 × 2.4 deg2 ‘15-h deep
field’ centred at RA = 14h31m28.s5 and Dec. = 2◦0′, which was
observed with an integration time of 105 h, and a 7.0 × 4.3 deg2

‘1 h wide field’ centred at RA = 0h52m0s and Dec. = 0◦9′, which
was observed with an integration time of 85 h. Each of the fields was
observed in four sub-data sets {A, B, C, D} which have a similar
integration time and sky coverage. The subset maps were taken
at different times, such that the thermal noise of the instrument is
independent in each map.

The data were obtained in the frequency range 700–900 MHz,
i.e. 0.58 < z < 1 for the redshifted 21 cm line, divided into 4096
channels across the bandwidth. The data were rebinned into fre-
quency bands of width 0.78 MHz, equivalent to a comoving width of
3.8 h−1 Mpc along the line of sight at the band centre. The total cali-
bration uncertainty is 9 per cent. The map-making conventions of the
GBT team follow the CMB description given by Tegmark (1997).
The angular pixels have a dimension of 0.0627 × 0.0627 deg2 and
the maps consist of 78 × 43 pixels for the 15-h field and 161 ×
83 pixels for the 1-h field. The telescope beam has a comoving width
of approximately 9.6 h−1 Mpc at the band centre, corresponding to
the full width at half-maximum (FWHM) θFWHM = 0.◦28 of the
symmetric, 2D Gaussian-shaped telescope beam. In the analysis
presented by MA13 and SW13, the data are convolved to a com-
mon angular resolution θFWHM = 0.◦44 to mitigate the effects of
polarization leakage. In this work, we instead process the uncon-
volved data with a frequency-dependent resolution spanning 0.◦25
< θFWHM < 0.◦31 across the observed range. The telescope beam
can be well approximated by a Gaussian with standard deviation
θFWHM/2.

2.2 WiggleZ Dark Energy Survey

The WiggleZ Dark Energy Survey (Drinkwater et al. 2010) is a
large-scale galaxy redshift survey of bright emission-line galaxies
over the redshift range z < 1, with a median redshift z ≈ 0.6 and a
galaxy bias factor b ∼ 1. The survey was carried out at the Anglo–
Australian Telescope between 2006 August and 2011 January. In
total, ∼200 000 redshifts were obtained, covering ∼1000 deg2 of the
equatorial sky divided into seven well-separated regions. The two
GBT fields analysed in this study have a nearly complete angular
and redshift overlap with two of these WiggleZ regions, and the
two data sets are therefore well suited for cross-correlation analysis.
Following the cut to the redshift range 0.58 < z < 1, a total of 6731
WiggleZ galaxies are used in this analysis. The WiggleZ selection

MNRAS 464, 4938–4949 (2017)



4940 L. Wolz et al.

function within each region, which is used to produce the optimal
weighting for our power spectrum analysis, was determined using
the methods described by Blake et al. (2010), averaging over a large
number of random realizations matching the angular completeness
and redshift distribution of the sample.

3 POW ER SPECTRUM MEASUREMENT

3.1 Optimally weighted power spectrum estimator

The sky area and redshift interval of the GBT intensity mapping
data allow us to apply a ‘flat-sky approximation’ where we map the
angular and redshift pixels into a cuboid in comoving space using
a fiducial cosmology. Our description in this section follows the
conventions of Blake et al. (2010, 2013), and recasts the analysis in
terms of temperature power spectra of intensity maps with a weight-
ing scheme dictated by the noise properties of the observations.

We consider the intensity maps as overtemperatures in units of
millikelvin measured as a discrete function of position, δ(xi) =
T (xi) − T̄ , where T̄ is the mean temperature of each frequency
slice. The pixel dimensions of the data are (Nx, My, Kz), where Nx

and My define the angular grid given by the map-making process
and Kz is the total number of frequency bins. The total number
of pixels is Npix = Nx · My · Kz. The data cuboid has comoving
physical dimensions Lx × Ly on the sky, and a radial dimension
Lz, where we neglect the slow variation of comoving pixel size
with frequency such that each cell has a volume Vcell = LxLyLz

NxMyKz
.

We use a fiducial cosmological model given by Planck Collab-
oration XIII (2016) with the parameters θ = (h = 0.678, �m =
0.308, �b = 0.0486, ns = 0.968, σ8 = 0.816, w = −1.0).

The Fourier-transformed temperature field is a function of the
wavevector kl . The resolution of the measurements in each direc-
tion of Fourier space is given by �kx = 2π/Lx , �ky = 2π/Ly and
�kz = 2π/Lz. The upper bound on kl , which refers to the smallest
scale in real space which can be measured in our grid, is deter-
mined by the Nyquist frequency in each direction kNyq, x = π Nx/Lx,
kNyq,y = πMy/Ly and kNyq, z = π Kz/Lz. The Fourier amplitudes for
each mode are calculated via

δ̃(kl) =
Npix∑
j=1

δ(xj )w(xj ) exp (ikl · xj ). (1)

The temperature of each pixel is multiplied by a weighting func-
tion w(xj ), which we normalize such that

∑Npix
i=1 w(xi) = 1 in the

estimators given below.
In the case of noise-dominated intensity mapping data, the

weighting function is directly related to the noise in each pixel.
We consider a simple inverse-variance weighting using this noise
map. Under the assumption that the noise is uncorrelated between
pixels, the estimate of the power spectrum for each Fourier ampli-
tude in volume units is given by

Pest(kl) = Vcell|δ̃(kl)|2∑Npix
j=1 w2(xj )

. (2)

In our analysis, we estimate the cross-power spectrum of every pair
of different sub-data set maps, in order to suppress the additive
thermal noise correction term. The cross-power spectrum for two
intensity mapping data sets A and B is

P AB
est (kl) = VcellRe{δ̃A(kl)δ̃B (kl)∗}∑Npix

j=1 wA(xj )wB (xj )
. (3)

We bin amplitudes of Fourier modes k according to the value of
k = |k|.

The above equation for the cross-correlation between two inten-
sity mapping data sets can be recast for the cross-correlation with
galaxy survey data, P X

est(kl), where the overdensity is defined as the
number of galaxies per voxel Ni divided by the mean galaxy density
at this position of the cube, N̄ (xi), δg(xi) = Ni/N̄ (xi). The optimal
weighting function wg(xi) = 1/(1 + W (xi) × N̄P0) is computed
via the selection function W (xi) given by Blake et al. (2010) with
P0 = 103 h−3 Mpc3.

We also correct the power spectrum estimate for the effect of the
telescope beam by dividing the measured power spectrum P̂ (ki) by
the discretized, Fourier-transformed beam B̃(ki). The beam B(xj )
is constructed as a spatial, 2D Gaussian discretized on the grid such
that it only acts on modes perpendicular to the line of sight.

The thermal noise contributes to errors in the cross-power spec-
trum measurements. For noise-dominated data, the cosmic variance
contribution can be neglected. Under the assumption that the noise
has similar properties in each data set, we can estimate the error
in the intensity mapping cross-correlation as (compare, e.g. White,
Song & Percival 2009)

σ
(
P AB

est (ki)
) = Pnoise(ki)/

√
2N (ki), (4)

where the noise power spectrum Pnoise is scaled by
√

2 since two
independent maps are correlated, and N(kl) is the number of inde-
pendent measured modes per bin. There are various approaches for
estimating Pnoise, which we discuss further in Section 5.

The error in the galaxy-temperature cross-power spectrum can
be estimated using the galaxy power spectrum P

g
est and the intensity

mapping power spectrum P AB
est :

σ
(
P X

est(ki)
) =

√
1

2N (ki)

√
P X

est(ki)2 + P
g
est(ki)P AB

est (ki). (5)

In this work, we present all power spectra in the dimensionless
form

�2(ki) = k3
i

2π2
P (ki). (6)

3.2 Theoretical prediction

We compare the measured power spectra of the intensity maps with a
theoretical prediction Pth(k), generated from the linear CAMB (Lewis,
Challinor & Lasenby 2000) power spectrum scaled by the growth
function for z = 0.8. The weighting scheme alters the shape of the
power spectrum. In order to account for this effect, we convolve the
theoretical prediction with the weighting function via

P̂th(kj ) =
∑

i Pth(k′
i)Re{w̃A(kj − k′

i)w̃B (kj − k′
i)

∗}∑Npix
j=1 wA(xj )wB (xj )

. (7)

For this computation, we grid the 1D Pth(k) in 3D Fourier space
in the same fashion as the intensity maps, hence discretizing the
modes as Pth(kj ).

The estimated power spectrum of the intensity maps relates
to the theory as Pest = b2

H I
T̄ 2

H I
Pth. We use equation (1) in MA13

as a model for the mean H I temperature, which predicts T̄H I =
0.29 mK × �H I/10−3 in our fiducial cosmology. The factor bH I�H I

is chosen following MA13 as 0.43 × 10−3. We note that this
is a lower limit because of the unknown cross-correlation coeffi-
cient r between H I and galaxy overdensity. The cross-correlation
P X

est = bH Ibopt�H IrPth depends additionally on the optical galaxy
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bias, which is assumed to be b2
opt = 1.48 according to the measure-

ments in Blake et al. (2010).

4 FO R E G RO U N D R E M OVA L
AND SYSTEMATICS ANALYSIS

4.1 FASTICA application

We apply FASTICA to the intensity mapping data cube in order to
remove the foregrounds. We refer the reader to Wolz et al. (2014)
for a more detailed description of the method, and provide a brief
summary here. The methodology solves the linear problem

x = As + ε =
NIC∑
i=1

ai si + ε, (8)

where x is the input data, A is a mixing matrix, s represents the
NIC independent component amplitudes (ICs), and ε is the residual.
The ICs can be interpreted as maps with the same spatial dimen-
sion as the intensity maps. The amplitude of each IC as a function
of frequency is given by the mixing modes ai . FASTICA identifies
components with a strong spectral correlation and incorporates them
into the ICs by using the Central Limit theorem, such that the non-
Gaussianity of the probability density function of each IC is max-
imized. This implies that FASTICA neglects Gaussian-distributed
components, such that the contributions represented by As include
non-Gaussian foregrounds (and potentially non-Gaussian H I signal
and noise). The residual ε is the foreground-subtracted data cube,
which ideally contains Gaussian 21-cm signal and noise, but, in
principle, can also include residual foregrounds.

The number of ICs (NIC) used in the component separation is
a free parameter and cannot be determined by FASTICA itself.
In the following subsections, we carefully examine the foreground-
subtracted data for different numbers of ICs, ensuring that the results
do not sensitively depend on this choice.

4.2 Foreground point-source removal

The data maps contain prominent signals from extra-Galactic point
sources which contribute emission at all frequencies. FASTICA
models the spatial structure of the foregrounds as well as their
frequency dependence. Fig. 1 presents the maps of the ICs for sub-
data set A of the 15-h field, where an analysis with 2, 6 and 10 ICs
is shown. The first column displays the IC maps determined by an
analysis of the full field. In these maps, the IC model is dominated
by features at the edges of the fields driven by high instrumental
noise in these regions, due to the poor observational coverage of the
edges of the fields. The IC maps do not optimally model the point
-source structure and diffuse foregrounds because of this high noise
contamination. By masking out those regions, as seen in the second
column of Fig. 1, the ICs instead contain the spatial structure of the
point sources of extra-Galactic foregrounds. We observe a similar
behaviour of the ICs for the remaining data sets and the 1-h-field
analysis; hence, we will use the masked data cubes for our analysis.

Furthermore, we examine the residual maps for point-source con-
tamination at all frequencies. This can be checked most accurately
by summing the residual maps over all frequencies. The instru-
mental noise and cosmological signal are expected to be close to
Gaussian-distributed, hence, to show no spatial structure when aver-
aging over many frequencies (see, e.g. Tegmark & de Oliveira-Costa
1998; Baccigalupi et al. 2000). In Fig. 2, the frequency-combined
residual map of sub-data set A of the 15-h-field is shown for dif-

ferent numbers of ICs. The analysis of the full field is shown in
the first column, and the masked field in the second column. The
results from the full maps demonstrate again how the high noise at
the edges of the field is not fully modelled by FASTICA. For the
masked analysis with two ICs, as seen in panel (b), the frequency-
combined maps contain point-source residuals. These residuals fade
out with increasing number of ICs, until they are clearly removed
for 10 ICs in panel (f). These tests evidence how FASTICA is able
to model and subtract the strong point sources from the intensity
maps using NIC ≥ 6.

The 1-h field contains fewer strong point sources, but the obser-
vations suffer from inhomogeneous noise properties due to shorter
integration times. Although FASTICA cannot effectively model
systematic effects with near-Gaussian distributions, the individual
sub-data sets exhibit different noise imprints such that their effect
on the cross-correlation between the maps should be diminished.

4.3 Calibration or instrumental resonance

Some frequency channels of the GBT are sensitive to telescope res-
onance or radio frequency interference. In addition, the calibration
of the telescope is a source of error in the amplitude of the measure-
ments. In Fig. 3, the mixing modes ai , which give the mixing ampli-
tude per frequency channel, are plotted for an analysis of one data
set of the 15-h field with 2, 6 and 10 ICs as a function of frequency
bin, where bin 0 refers to f = 900 MHz, i.e. z = 0.58. In a perfect
foreground subtraction scenario, each line should represent the flat
spectral index of a foreground component. However, instrumental
effects such as calibration errors, varying thermal noise, frequency-
dependent polarization errors and telescope resonances disturb the
flat spectra and allow identification of corrupted data. Around the
frequencies 798 and 817 MHz, two known telescope resonances
corrupt the measurements and are flagged during the map-making.
These channels can be seen as the spikes in panels (a), (b) and (c)
of Fig. 3, where we performed FASTICA on the full data set. After
removal of both the contaminated frequency channels and the first
few frequency bins which show anomalies due to calibration uncer-
tainties, the resulting mixing modes are shown in panels (d), (e) and
(f). One mixing mode spectrum for two ICs exhibits two features
at high-frequency bins, which points to a further irregularity in the
data due to instrumental effects. In panels (e) and (f), using six and
10 ICs, we observe that some modes show high fluctuations around
a flat spectrum. These large-amplitude oscillations are due to FAS-
TICA modelling dominant noise features as ICs. Again, excluding
the noisy edges of the field solves this issue, producing the results
shown in panels (g), (h) and (i), in which the mixing modes are rela-
tively flat and featureless. We are therefore confident that FASTICA
predominately identifies frequency-dependent foreground compo-
nents in this case, and we utilize the masked 15-h field with 58 ×
33 pixels in the remainder of this work.

The analysis of the 1-h field exhibits similar improvements when
masking the edges, although more fluctuations in the mixing modes
are obtained as FASTICA attempts to model the strong noise fea-
tures present in these observations. Our default mask of the 1-h-field
results in 121 × 53 pixels.

4.4 Noise properties

In Fig. 4, we show the standard deviation of the residual maps
along the line of sight. For noise-dominated data, we expect the
standard deviation to be much higher than the amplitude of the
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Figure 1. The maps of the independent components identified for sub-data set A of the 15-h field, assuming different numbers of ICs. The first column shows
the results when analysing the full field, and the second column displays a masked analysis in which the noise-dominated edges are disregarded.

sum of all pixels, as can be seen when comparing the standard
deviation values with Fig. 2. The structure of the standard de-
viation maps additionally shows how the noise varies with spa-
tial position. For sub-data set A of the 15-h field in Fig. 4, this

structure is stable when increasing NIC from 2 to 6 and 10. This
suggests that the leakage of noise into the reconstructed Galac-
tic foregrounds is low, and confirms the Gaussian nature of the
instrumental noise.

MNRAS 464, 4938–4949 (2017)
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Figure 2. The sum of the temperature residual maps of sub-data set A of the 15-h field over all frequency channels. The residual maps after the foreground
removal with FASTICA should contain only noise and 21 cm signal. The first and second columns show the sum over the full field and the analysis in which
the edges of the fields are masked, respectively.

The noise levels of the residuals of the 1-h field maps are less
stable than the 15-h field with increasing number of ICs, and are
dominated by single features with an irregular distribution over the
map due to the differing observational depth of the pixels. FAS-
TICA can incorporate some of the strong features as ICs, partially
removing the noise systematics. We note that the noise structure
of each sub-data set differs, which prevents contamination of the
cross-correlation.

We can access more information about the structure of the
data by measuring the 2D power spectra of maps correspond-
ing to individual frequency channels. Following the formalism of
Section 3, Fourier-transformed temperature maps are calculated as
T̃A(kl) = ∑Npix

j=1 TA(xj ) exp (ikl · xj ), and the 2D power spectrum
is defined as P2D(kl) = Re{T̃A(kl)T̃B (kl)∗}. The noise power spec-
trum of a frequency map can be estimated via two measures:

(i) A jack-knife test. The difference of two sub-data sets should
only contain thermal noise since the astrophysical signal re-
mains unchanged with time. We obtain an estimate of the noise
power spectrum of one map by calculating the power spec-
trum of the difference map and dividing it by 2. The differ-
ence maps also encode systematic errors between the sub-data
sets.

(ii) Autocorrelation. The power spectrum of each sub-data set
after the foreground removal should be a proxy for the noise, if it
dominates the H I signal.

In Fig. 5, we show a few examples of the 2D power spectra
of the difference maps and the autocorrelations of the 15-h field,
where we averaged over all possible combinations of sub-data sets.
It can be seen that the difference-map correlations contain more
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Figure 3. The mixing matrix A as a function of frequency for an analysis of sub-data set A of the 15-h -field. The three columns show analyses using two, six
and 10 ICs, respectively. The first row results from an analysis of the full field. For the analysis shown in the second row, the frequency channels contaminated
by instrument resonance, and the first few frequency channels, have been removed. In the third row, the noise-dominated edges of each map are also masked
out, which produces a smoothly varying variation of the mixing matrix with frequency, as expected in a successful foreground subtraction.

power than the autocorrelations. This can be explained in terms of
the spatial structure of the difference maps, as shown in Fig. 6.
The difference maps show a clear structure at the position of the
point sources, produced by instrumental effects which correlate
with the amplitude of signal such as calibration errors, pointing
offsets and thermal noise. The amplitude of this systematic contri-
bution does not depend on frequency. FASTICA models the point
sources in each sub-data set independently, hence can remove these
systematic effects. The analysis of the 1-h field shows a similar
behaviour.

4.5 Residual–foreground correlation

We can also evaluate the foreground removal by considering the
2D cross-power spectra between different frequency maps. In the
following plots, we show two kinds of correlations:

(i) Cross-correlation of the residual maps from different sub-data
sets. This cross-correlation should be driven by the cosmological
signal since the noise is uncorrelated between sub-data sets. How-
ever, it could also be produced by residual foreground contamina-
tion.

MNRAS 464, 4938–4949 (2017)
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Figure 4. The standard deviation of the temperature residual maps across
the frequency channels for sub-data set A of the 15-h field, for analyses using
two, six and 10 ICs. The standard deviation is unaffected by the number of
ICs chosen.

(ii) Cross-correlation of the residuals and the reconstructed fore-
ground maps. Such a signal could be produced if the foregrounds
are insufficiently modelled and contaminate the residuals, or if the
ICs contain instrumental noise or cosmological signal.

In Fig. 7, we display examples of these 2D power spectra,
analysing the full field in the first column and the masked field
in the second column, for a series of stacks of 20 frequency chan-
nels. Since the maps are dominated by thermal noise, the noise
decreases as 1/

√
N when adding N frequency channels.

The amplitudes of the cross-correlations are proportional to the
product of mean temperatures of the two input maps. In order to
compare the cross-correlation of foreground and residuals with the
correlation of residual maps, we need to normalize the amplitude,
for which we use the standard deviations of the respective maps.

In the first column, the figures show the results of the flawed
FASTICA decomposition, which insufficiently removes the point
sources of the foregrounds, as seen in the stacked maps in Fig. 2. The
solid lines show a similar behaviour for different numbers of ICs
and frequencies, indicating a correlation between foregrounds and
residuals. In the second column, the masked results, which are clean
of point source contamination, are shown. The cross-correlation of
the foregrounds and residuals are relatively randomly distributed
and are an indication that the data sets are dominated by statistical
noise not systematic foregrounds. The dashed lines in all figures
are the residual correlation between all combinations of sub-data
sets. These converge with increasing number of ICs, confirming
the results of the successful foreground removal of previous tests
and demonstrating that our results do not sensitively depend on the
number of ICs chosen. The cross-correlation of the residuals and
foregrounds of the 1-h field show a similar behaviour.

5 3 D POW ER SPECTRUM RESULTS

5.1 Autocorrelations

In this section, we present the results of the 3D power spectrum es-
timation from the GBT intensity maps. We consider three different
strategies for estimating errors in the power spectrum measure-
ments, and compare these in Fig. 8:

(i) We use the autocorrelations of the residual maps as a proxy
for the noise power spectrum in equation (4) (solid error bar).

Figure 5. 2D auto-power spectra of the residual maps of the 15-h field for different ICs (solid lines), in comparison to the difference-map power spectrum of the
original maps (dashed lines). Each power spectrum is an average of all possible combinations of sub-data sets. These power spectra are a noise approximation
of the maps before and after the foreground removal.
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Figure 6. The difference maps of the 15-h-field observations for frequency ν = 869 MHz. The difference maps exhibit spatial structure due to systematic
errors in the sub-data sets.

Figure 7. The 2D cross-power spectra between reconstructed foregrounds and residuals of the 15-h field, marked as the solid lines for different numbers of ICs
with different colours. The dashed lines represent the residual power spectrum between sub-data sets. Each panel shows the 2D power spectrum with different
scales for large and small wavenumbers k. The correlations in each row are estimated over three frequency ranges, each containing 20 frequency bins. The first
column of two panels is for a full-field analysis, and the second column shows results for the masked field.
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Figure 8. Different estimates of the error in the 3D power spectrum measurement are shown for different numbers of ICs, for the 15- and 1-h fields. The black
dashed line is the error estimate based on the difference maps. The solid coloured line shows the error based on the autocorrelations of the sub-data set, and the
dotted coloured line represents the standard deviation of the cross-power spectrum measurements between the sub-data sets. The error estimates of the SW13
analysis are marked by grey crosses.

(ii) We use the power spectrum of the difference of the maps,
divided by 2, as a proxy for the noise power spectrum in equation
(4) (dashed error bar).

(iii) We calculate the standard deviation of the six sub-data set
cross-power spectra used in the analysis, and divide it by

√
6 to

produce an error in the mean (dotted error bar).

The error based on the noise estimate from the difference maps
(black dashed line) is higher than the other two error estimates.
We believe that this provides an upper limit on the error in the
measurements since it includes systematic effects correlated with
the foregrounds, which FASTICA partially subtracts from the data.
The noise estimate from the autocorrelation gives a better approxi-
mation to the errors in the foreground-subtracted measurements.

In Fig. 9, we present the intensity mapping power spectrum es-
timates for different numbers of ICs used for the foreground sub-
traction, in comparison with the results published by SW13, which
are marked by grey symbols. The estimates are the average of all
possible combinations of the cross-power spectra between the four
sub-data sets, showing the different error estimates from Fig. 8 with
their respective line styles. The power spectra have all been cor-
rected for the telescope beam, using a constant beam model with
θFWHM = 0.◦44 for the SW13 data points, and a frequency-dependent
beam for the FASTICA measurements.

The power spectra converge with increasing number of ICs, show-
ing that FASTICA is a robust method to remove the non-Gaussian
foregrounds. In Fig. 9(a), we see that our measured power spec-
tra in both fields are in reasonable agreement with the results of
SW13 on large scales with k < 0.2 h Mpc−1 but diverge for smaller
scales. The power spectrum amplitude of the 1-h field is higher than
that of the 15 h field due to some residual foregrounds and sig-
nificant instrumental systematics in the 1-h-field maps. The GBT
measurements are corrected for signal loss by an anisotropic trans-
fer function T(k⊥, k‖), as described by Switzer et al. (2015). The
power spectrum of the FASTICA-cleaned data does not require any
corrections by a transfer function since the signal loss is negligible,
as shown by Wolz et al. (2014).

The high amplitude of the intensity mapping power spectra mea-
sured by FASTICA on smaller scales is driven by its conservative

approach to foreground subtraction. This is in contrast to the SVD
method, which removes modes with high amplitudes, regardless
of their statistical properties. This comparison shows that FAS-
TICA provides a robust upper limit on the foreground removal,
while SVD could provide a lower limit on the removable fore-
ground modes. Both methods have been shown to perform well
in a simulated environment (Alonso et al. 2015). However, in the
presence of high instrumental noise and systematics, the foreground
removal methodology can lead to significant differences. FASTICA
succeeds in removing resolved point sources and diffuse frequency-
dependent foregrounds dominating on large scales. However, it is
not equipped to mitigate systematics on smaller scales dominated
by thermal noise. The SVD approach removes modes on all scales
but is prone to H I signal loss. We believe that the application of
both methods is a useful approach when investigating foregrounds
and systematics of intensity mapping data.

In general, the autocorrelations of the 15- and 1-h fields are high
compared with the theoretical prediction. This discrepancy could be
explained in several ways. Systematics leftover from the foreground
subtraction could boost the amplitude of the power spectrum, and
additional power could be added to the 21-cm signal by fluctuations
introduced by polarization leakage. Finally, a different predicted
amplitude could be produced by changing the value of �H IbH I.

5.2 Cross-correlation with WiggleZ

The cross-power spectra of the intensity maps with the WiggleZ
galaxy survey for both fields are shown in Fig. 10, for a range of
different numbers of ICs. The errors in this figure are given by the
standard deviation of the estimates between the sub-data sets, and
the empty symbols mark negative correlations. The cross-power
spectra converge with increasing number of ICs for both fields,
verifying that FASTICA does not subtract 21-cm signal from the
data.

In Fig. 11, we show the cross-correlation for both the 15- and
1-h fields, using 10 and 20 ICs, respectively, in comparison with
the results of MA13, which are marked with blue and green shaded
areas. Two measurement errors are shown: the standard deviation
of the estimates between the sub-data sets (as the solid lines) and
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Figure 9. The 3D intensity mapping cross-power spectrum between sub-data sets of the 15-h field data (left-hand panel) and 1-h field (right-hand panel),
showing the different error estimates from Fig. 8 using the respective line styles. The measurements from SW13 are marked by grey crosses. The black line
shows the theoretical model power spectrum convolved with the window functions assuming �H IbH I = 0.43 × 10−3.

Figure 10. The 3D cross-power spectrum of the GBT intensity maps and WiggleZ galaxies, for foreground subtraction with different numbers of ICs. Results
are shown for the 15-h field in the left-hand panel and the 1-h field in the right-hand panel. The black lines are the theoretical model convolved with the
respective window functions assuming �H IbH I = 0.43 × 10−3.

the theoretical expectation computed using equation (5) (as the
dashed lines), which, respectively, provide an upper and a lower
limit of the measurement errors. Negative cross-correlations are
again indicated by empty symbols. Fig. 11(a) demonstrates that our
estimates generally agree with the previous findings.

6 C O N C L U S I O N S

In this study, we present a thorough analysis of two intensity-
mapping fields observed by the GBT, previously analysed by MA13
and SW13. Our pipeline includes a Fourier-based, weighted power
spectrum estimator for autocorrelations and cross-correlations with
galaxy surveys. We remove the diffuse Galactic foregrounds
and point-source contamination with FASTICA, which separates
components based on a measure of their non-Gaussianity. The
subtraction fidelity and systematic errors are investigated for

analyses with different numbers of ICs, showing that the residual
maps converge and the results are not dependent on this choice.
We explore different types of masking of the maps to reduce
strong noise contamination at the edges of the fields. We con-
firm that FASTICA is well suited for subtracting the Galactic and
non-Galactic foregrounds from intensity mapping data since, by
construction, it does not remove Gaussian 21-cm signal but can-
not prevent from removing the possibly non-Gaussian 21-cm sig-
nal.

The autocorrelation of the residual intensity maps from FASTICA
has a higher amplitude than the previous measurements by MA13
and SW13. This is because FASTICA is a conservative foreground
removal technique compared to the SVD method. Both techniques
measure autocorrelation power significantly above our current best
guess of the cosmological signal, indicating severe systematic con-
tamination in the current data sets. The cross-power spectrum
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Figure 11. The 3D cross-power spectrum of the GBT intensity maps and WiggleZ galaxies, for the 15-h field (using foreground subtraction with 10 ICs) in
the left-hand panel and for the 1-h field (using 20 ICs) in the right-hand panel. The results of MA13 are marked by the shaded areas. The black lines are the
theoretical model convolved with the respective window functions assuming �H IbH I = 0.43 × 10−3. The solid error bars are given by the standard deviation
between sub-data sets and the dashed error bars using equation (5).

between the intensity map and the WiggleZ galaxy survey converges
with increasing number of ICs, and is in reasonable agreement with
the measurements of MA13.

We conclude that SVD and FASTICA serve as complementary
tools for exploring the systematics and quality of foreground re-
moval in noise-dominated intensity mapping data sets. In future
work, we are planning to combine both techniques in order to ex-
ploit their individual advantages in the data reduction.
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Pullen A. R., Doré O., Bock J., 2014, ApJ, 786, 111
Shaw J. R., Sigurdson K., Pen U.-L., Stebbins A., Sitwell M., 2014, ApJ,

781, 57
Shaw J. R., Sigurdson K., Sitwell M., Stebbins A., Pen U.-L., 2015, Phys.

Rev. D, 91, 083514
Switzer E. R. et al., 2013, MNRAS, 434, L46 (SW13)
Switzer E. R., Chang T.-C., Masui K. W., Pen U.-L., Voytek T. C., 2015,

ApJ, 815, 51
Tegmark M., 1997, ApJ, 480, L87
Tegmark M., de Oliveira-Costa A., 1998, ApJ, 500, L83
Tegmark M. et al., 2004, ApJ, 606, 702
Vujanovic G., Staveley-Smith L., Pen U.-L., Chang T.-C., Peterson J., 2009,

ATNF Proposal, p. 2491
White M., Song Y.-S., Percival W. J., 2009, MNRAS, 397, 1348
Wolz L., Abdalla F. B., Blake C., Shaw J. R., Chapman E., Rawlings S.,

2014, MNRAS, 441, 3271
Wyithe J. S. B., Loeb A., Geil P. M., 2008, MNRAS, 383, 1195
Zhang L., Bunn E. F., Karakci A., Korotkov A., Sutter P. M., Timbie P. T.,

Tucker G. S., Wandelt B. D., 2016, ApJS, 222, 3

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 464, 4938–4949 (2017)

http://arxiv.org/abs/0807.3614
http://arxiv.org/abs/0807.3614
http://arxiv.org/abs/1206.0143

